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Abstract— Mapping three-dimensional (3-D) dynamic envi-
ronments is essential for aerial robots but challenging to
consider the increased dimensions in both space and time
compared to 2-D static mapping. This paper presents a kernel-
based 3-D dynamic occupancy mapping algorithm, K3DOM,
that distinguishes between static and dynamic objects while
estimating the velocities of dynamic cells via particle tracking.
The proposed algorithm brings the benefits of kernel inference
such as its simple computation, consideration of spatial cor-
relation, and natural measure of uncertainty to the domain
of dynamic mapping. We formulate the dynamic occupancy
mapping problem in a Bayesian framework and represent the
map through Dirichlet distribution to update posteriors in a
recursive way with intuitive heuristics. The proposed algorithm
demonstrates its promising performance compared to baseline
in diverse scenarios simulated in ROS environments.

I. INTRODUCTION

Robots understand their states and surroundings through
environment perception. Mapping three-dimensional (3-D)
environments is especially essential for autonomous aerial
vehicles (UAVs) moving in 3-D space to keep a safe space
from terrain and obstacles with possible movements. Map-
ping local environments is often done with occupancy map
by estimating whether each discretized space, i.e., cell, is
occupied or not. In addition to the occupancy information,
it is also necessary to distinguish dynamic obstacles from
static environments and estimate their dynamic states, e.g.,
velocity, for vehicles to plan a collision avoiding maneuver.

Our goal is to efficiently build a 3-D map that estimates
the occupancy and velocity of each cell from online mea-
surements stream. Related to this work, existing methods
for static occupancy mapping focus mainly on considering
spatial correlation among cells as sparse and noisy sensor
measurements cause inconsistencies between environments
and their occupancy maps. The discrepancies become more
problematic in 3-D mapping because sensor rays in 3-D
space are sparser than those in 2-D space. Several works have
been proposed to incorporate such spatial correlation, includ-
ing the methods based on Gaussian process regression [1]
and logistic regression with hilbert maps [2], [3]. Recently,
[4] applied the Bayesian kernel inference [5] to 3-D mapping
for efficient Bayesian updates of posteriors. Nonetheless,
these methods are incapable of identifying moving objects
and, thus, unsuitable for dynamic environments.

Further studies have been proposed to deal with dynamic
environments. [6] introduced continuous dynamic occupancy
mapping using Gaussian process regression, and [7] enabled
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Fig. 1: Data flow and outputs of K3DOM in simulated urban
environments. The algorithm classifies the two moving cars
by representing dynamic cells as blue while static cells as
green in (c). (d) indicates more uncertain estimation with
darker color in gray scale.

faster estimation through stochastic variational inference. [8]
also took a variational approach on Hilbert map to enable
long-term dynamic occupancy mapping. Other mathematical
formulation can be also found in [9], [10], [11], while they
are shown not to be real-time capable. Nevertheless, [12]
proposed a primitive version of Sequential Monte Carlo
Bayesian Occupancy Filter (SMC-BOF) exploiting a particle
filter to make a real-time viable algorithm. Furthermore, this
idea has been combined with the Dempster-Shafer theory of
evidence in [13]. By the virtue of multi-hypothesis evidential
representation, its following studies have shown promising
results [14]. However, the aforementioned works are focusing
on 2-D environments, and simply extending them to 3-D en-
vironments requires extensive computing power and memory
due to the higher degree of freedom of 3-D environments.

In this paper, we present an efficient and robust 3-D
dynamic occupancy mapping algorithm, called K3DOM.
It distinguishes between static environments and moving
objects, provide uncertainty estimates of the classification,
and estimate the velocities of dynamic cells. The main con-
tribution of our work is that we developed an algorithm that
exploits both spatial and temporal correlation by representing
the map with Dirichlet distribution and applying kernel infer-
ence to it with intuitive heuristics. The proposed algorithm
extends the existing kernel-based static mapping algorithm
[4] to dynamic environments and brings the benefits of kernel
inference to the literature of dynamic mapping.

The major challenges of extending the static mapping
algorithm in [4] to dynamic environments are twofold. First,



dynamic occupancy can be inferred only through temporal
correlation since range sensors such as LiDAR measure
occupancy without dynamic states. Thus, we need to estimate
whether the measurements are for dynamic or static objects.
Second, it is hard to resolve the disparity between accumu-
lated map and new measurement. In dynamic environments,
such inconsistency happens frequently as dynamic objects
move into vacant space that has not been occupied for a long
time. In such case, the accumulated information overwhelms
the new measurement so that the algorithm disregards the
environmental change that the measurements tell.

II. BACKGROUND - BAYESIAN GENERALIZED KERNEL
INFERENCE

The 3-D static occupancy mapping algorithm in [4] in-
troduced Bayesian Generalized Kernel Inference (BGKI) by
extending the discrete counting sensor model proposed in
[15]. The counting sensor model represents the occupancy
probability of each map cell through Bernoulli distribution
and employs Beta distribution as its conjugate prior under
conditionally independent measurement model. Then, the
Bayesian update of the Bernoulli parameter is deduced to
counting how often beams have ended in and passed through
each cell. BGKI extends this discrete counting scheme to
continuous space and imposes spatial correlation among
occupancy predictions at nearby points.

BGKI employs the kernel inference method proposed in
[5]. With the Bernoulli likelihood model and the ‘smooth’
assumption with its extended likelihood, the conjugate prior
of the occupancy probability θ∗ of a query point x∗ is given
by Beta(α0, β0) which shapes the occupancy probability θ∗
and free probability 1 − θ∗. For range sensor measurement
X := {X,Y } which is a set of positions and their corre-
sponding occupancy states (0 for ’free’ and 1 for ’occupied’),
the posterior of θ∗ is updated to follow Beta(α, β) with

α = α0 +
∑

(x.y)∈{X,Y }

k(x∗, x)y (1)

β = β0 +
∑

(x.y)∈{X,Y }

k(x∗, x)(1− y) (2)

where the sparse kernel function from [16] is employed:

k(x, x′) :={
σ0[ 1

3 (2 + cos(2π dl ))(1−
d
l ) + 1

2π sin(2π dl )] if d < l

0 if d ≥ l
.

(3)

d := ||x− x′||2, and σ0 and l are the kernel scale parameter
and length scale parameter, respectively. Since the update
only requires the measurements within a distance of l from
the query point, employing a k − d tree enables efficient
neighborhood search. The update can then be evaluated in
O(logM) time for M measurements, and updating the entire
N query points takes O(N logM) time.

Note that BGKI can be applied to any query point in the
continuous space R3. When the query point is the center of

each cell, the neighborhood formed by the kernel function
could let each cell reflect measurements beyond its boundary
unlike the discrete counting sensor model. We adapt this
scheme to consider spatial correlation among neighboring
cells. Also, we deal with the distribution of occupancy prob-
ability parameters as in BGKI, instead of directly affecting
the parameters as in the evidence-based algorithms [11],
[14]. The indirect update of occupancy probability provides
a natural way to measure the uncertainty of the estimation
through evaluating variance (see Sec. III-B).

III. DYNAMIC OCCUPANCY MAP REPRESENTATION

In this section, we formulate dynamic occupancy mapping
problem in a Bayesian framework. Then, we introduce our
approach to represent the occupancy map in order to solve
the estimation problem.

A. Problem Formulation

In 3-D dynamic occupancy mapping problem, the en-
vironments are represented by N cells where the center
of each ith cell locates at xi ∈ R3. The purpose of the
problem is to estimate the occupancy state ωit ∈ Ω :=
{F, S,D} of each ith cell at time-step t where F, S, and
D represent that the cell is not occupied (free), statically
occupied, and dynamically occupied, respectively. The state
estimation at time-step t is based on accumulated range
sensor measurements Xt := {Xk, Yk}tk=1 where Xk and Yk
represent locations of measurements and measured values
at time-step k, respectively. Note that, since free space
information is indirectly available from range sensors, single
free measurement is derived for each measurement ray as
the closest point on the ray from the query point as in [4].

We formulate the estimation problem in a Bayesian frame-
work. The posterior for the ith cell at time-step t is then
expressed as below.

p(ωit | xi,Xt) ∝ p(Yt | ωit, xi, Xt,Xt−1)︸ ︷︷ ︸
update

p(ωit | xi,Xt−1)︸ ︷︷ ︸
prediction

(4)
This factorization can be dealt with in a 2-step procedure
similarly as common Bayesian filters such as Extended
Kalman filter and particle filter [17]. The last term can be
further expanded as

p(ωit | xi,Xt−1) =

∫
p(ωit | ω1:N

t−1 , x
1:N ,Xt−1)

p(ω1:N
t−1 | x1:N ,Xt−1)dω1:N

t−1 . (5)

This formulation predicts the new state ωit from the previous
posteriors {p(ωjt−1 | xj ,Xt−1)}Nj=1 without new observation.
Then, the first term in (4) updates the predicted belief to the
posterior with the new measurements {Xt, Yt}. Our algo-
rithm is heuristically developed upon this ‘predict-update’
framework.



B. Occupancy with Dirichlet Distribution

We represent the occupancy through categorical distribu-
tion over Ω and model the priors and posteriors of its pa-
rameters for the states F, S, and D as Dirichlet distribution,
which is a multivariate generalization of Beta distribution
used in [4]:

θit := p(ωit | xi,Xt) ∼ Dir(αit) (6)

where θit = {θit,ω}ω∈Ω with θit,ω := p(ωit = ω | xi,Xt),
and αit := {αit,ω}ω∈Ω are the concentration parameters.
Similarly, we model the predicted belief (5) as

θ′t
i

:= p(ωit | xi,Xt−1) ∼ Dir(α′t
i
). (7)

αit is used in color coding for map visualization with (9):

RGB = (0, E[θit,S ], E[θit,D]). (8)

An advantage of using Dirichlet distribution is the simple
computation of its mean and variance. They are easily
calculated as below.

E[θit,ω] =
αit,ω
αit,A

∀ω ∈ Ω, (9)

V ar[θit,ω] =
E[θit,ω](1− E[θit,ω])

1 + αit,Ω
∀ω ∈ Ω (10)

where the subscript ( · )Ω :=
∑
ω∈Ω( · )ω . The mean value

is utilized as an estimation of the posterior θit,ω , while the
variance represents the uncertainty of the estimation. For the
ith cell at time-step t, we classify its occupancy state as D
(dynamically occupied) when E[θit,D] is above a threshold
and as O (occupied either statically or dynamically) when
E[θit,S + θit,D] is above a threshold.

C. Velocity with Particle Tracking

In addition to classifying the occupancy state of each cell,
we estimate the velocity of each dynamic cell by incorpo-
rating a particle filter. We adopt the particle management
scheme in [11], but utilize particles only for dynamic cells
instead of the whole map. A particle p is represented by
a position xp ∈ R3, a velocity vp ∈ R3, and a weight
wp ∈ R+, so that the dynamic parameter of the ith cell
is represented as

αit,D =
∑
p∈Pi

t

wp (11)

where Pit := {p : xp ∈ ith cell}. Then, the velocity of the
cell is estimated as:

vit =
1

αit,D

∑
p∈Pi

t

wpvp. (12)

Note that this velocity information is useful in diverse
applications such as path planning with collision avoidance.

IV. PREDICTION AND UPDATE OF MAP

The Dirichlet representations of the posteriors introduced
in Sec. III approximate the true posteriors. In this section,
we present our prediction and update algorithm to keep the
form of the approximation based on intuitive heuristics.

A. Prediction Step (α→ α′)

We compute α′t
i for the predicted belief in (7) from

the previous posterior with parameters αit−1 for each ith

cell. As movements of dynamic cells cause environmental
changes, the main focus of the prediction step is reflecting
the movements of particles that represents dynamic charac-
teristics of each cell. We employ a constant velocity model
with process noise for the motion of each particle. When
new measurements arrive after dt seconds from the previous
measurements, the states of a particle p are updated as

xp = xp + vpdt+ nx (13)
vp = vp + nv (14)

with process noises nx ∼ N (0, σxI) and nv ∼ N (0, σvI).
When the moved particles form a new set Pit for each ith

cell, we predict α′t
i as below (the cell index and the time

subscript are dropped for notational simplicity).

α′S = γdtαS (15)

α′D = min(
∑
p∈Pi

t

wp,max(0, γdt(αF + αD)− α′S)) (16)

α′F = γdt(αF + αD)− α′D (17)

where γ is a decaying factor that increases the uncertainty
of estimation by decreasing the total amount of accumu-
lated concentration parameters. Note that the variance (10)
increases while the mean (9) remains the same when the
parameters are decreased by the same ratio. New particles
form α′D while it cannot pass over γdt(αF + αD). As
dynamic objects move into and out of free space, we impose
the complementary relation by preserving the (decayed) sum-
mation of the free and dynamic parameters. We additionally
penalize the dynamic parameter by decreasing its upper
bound with α′S to prevent particles falling into static area.

B. Update Step 1: Rebalancing (α′ → α′′)

We aim to perform a kernel-based update similar to (1)
to estimate the posterior (6) from the new measurements
{Xt, Yt}. Although the kernel inference (1) benefits from
its simple and recursive computation as well as its intuitive
interpretation, we can’t directly apply it to dynamic environ-
ments as it does not differentiate old and new measurements.
For instance, when a dynamic object occupies a cell that has
been unoccupied for a long time, new occupancy measure-
ments near that cell hardly turn over the accumulated free
parameter of the cell. In this step, we solve the issue by
rebalancing the parameters based on new measurements.

For each ith cell, we first evaluate occupancy measure-
ments for two classes, ‘free’ and ‘occupied’, using the kernel
function as in (1):

∆αO =
∑

(x,y)∈{Xt,Yt}

k(xi, x)y (18)

∆αF =
∑

(x,y)∈{Xt,Yt}

k(xi, x)(1− y). (19)



Then, we compute rebalancing ratios among each of α′

based on ∆α and α′ itself. However, when those ingredi-
ents have small values with insufficient measurements, their
information is unreliable. Thus, we set a credit function

C(α) = tanh (α/αc) (20)

that evaluates the reliability of a parameter. The credit scale
αc is empirically chosen in the experiments. The joint credit
of the ingredients are assessed with their geometric mean as

c = C(
√

∆αΩα′Ω). (21)

We calculate the rebalancing ratios as follows:

λD→F = c
(∆αF−O)+

∆αΩ

α′D
α′Ω

(22)

λS→FD = c
(∆αF−O)+

∆αΩ

(α′O−F )+

α′Ω
(23)

λF→D = c
(∆αO−F )+

∆αΩ

(α′F−O)+

α′Ω
(24)

where ( · )+ := max{0, ( · )}, ( · )ω−ω′ := ( · )ω − ( · )ω′ ,
and ( · )O := ( · )S + ( · )D. Note that (( · )ω−ω′)+/( · )Ω is
non-negligible only when ( · )ω dominates ( · )′ω . When free
measurements dominate occupancy measurements, λD→F
depresses erroneously located particles by reducing their total
sum of weights, while λS→FD adjusts wrong portion of αS .
Here, we purposely give the half of λS→FD to D as the
state change from O to F indicates that a dynamic object
has just moved out from the space and locates nearby. On
the other hand, when occupancy measurements dominate free
measurements in area predicted as free, it is an evidence
of a dynamic object moved into that region. Thus, λF→D
keeps the complementary relationship between F and D by
transferring the parameters. Finally, rebalancing equations
are as below:

α′′F = α′F +
λS→FD

2
α′S + λD→Fα

′
D − λF→Dα′F (25)

α′′S = α′S − λS→FDα′S (26)

α′′D = α′D + λF→Dα
′
F +

λS→FD
2

α′S − λD→Fα′D. (27)

C. Update Step 2: Kernel Inference (α′′ → α)

Another limitation of the kernel inference (1) in dynamic
environments is the combined measurement of static and
dynamic states under the single state ‘occupied’. Hence, it is
hard to choose the true state that prompted the measurement
and, thus, to add ∆αO to the true state. Our solution is to
distribute ∆αO into S and D using a ratio β ∈ [0, 1]:

αS = α′′S + β∆αO (28)
αD = α′′D + (1− β)∆αO (29)
αF = α′′F + ∆αF (30)

We choose β based on the rebalanced α′′ as below:

β = (1− C(α′′O)) + C(α′′O)
α′′S
α′′O

. (31)

TABLE I: Hyperparameters for all experiments

Hyperparameter Symbol Value
Kernel length scale l 0.5 m

Kernel scale σ0 0.1
Dirichlet prior α0,F , α0,S , α0,D 0.001

Decaying factor γ 0.99
Credit scale αc 2.5

For small α′′O with insufficient confidence on occupancy, β
is set close to 1 with low credit value. Otherwise, we set β
close to the ratio of α′′ to follow our rebalanced prediction.
We give large portion of ∆αO to S rather than D in the little
confidence case to focus the limited number of particles to
certainly dynamic area. If the true state was D, the wrongly
assigned portion to S would be adjusted through λS→FD
term when the dynamic object leaves the cell.

V. EXPERIMENTAL RESULTS

The proposed algorithm is evaluated in various environ-
ments simulated through gazebo with comparison to the
3-D extended DS-PHD/MID filter [11]. For the easiness
of comparison, we follow the same particle management
algorithm with a fixed number of particles as in [11]. The
experiments are processed in ROS (Robot Operating System)
with a desktop with i7-7700K quad-core CPU and RTX
2060 Super GPU. We implemented the algorithm1 using
CUDA parallel computing and were able to process 5Hz
LiDAR data stream in real-time. We employed the VLP-16
model of velodyne simulator package to generate realistic
LiDAR measurement data. Hyperparameters throughout the
experiments are listed in Table I.

The evaluation consists of two parts: classification and
velocity estimation. In classification evaluation, the state of
each cell is determined by the concentration parameters (i.e.
α). It is worthwhile to note that the cell with high uncertainty
such as one in occluded region is excluded in evaluation. As
K3DOM and DS-PHD/MIB use different sets of parameters
to represent the state of a cell, we employ different exclusion
rules. We filter out the ith cell if{

αiΩ < ζ0 for K3DOM
mi
O +mi

F < ζ1 for DS-PHD/MIB
(32)

where mi
ω is the evidence of the hypothesis ω (O for

occupied and F for free). We empirically use ζ0 = 0.5 and
ζ1 = 0.1 throughout the experiments. After the exclusion, a
cell is classified as D if{

E[θit,D] > ζ2 for K3DOM
‖Vi‖2 > ζ3 for DS-PHD/MIB

(33)

where ‖Vi‖ is the Euclidean norm of the mean velocity of
the cell. The cell is correctly classified if its center is inside
a dynamic object. A cell is classified as O if{

E[θit,S ] + E[θit,D] > ζ4 for K3DOM
mi
O + 1

2m
i
Ω > ζ5 for DS-PHD/MIB

(34)

1The code is available online: https://github.com/youngjae-min/k3dom
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Fig. 2: Experiments in simple environment. (a) describes the simulated gazebo environment. (b-e) represent the classification
results of each algorithm with varying particle numbers while (b) includes LiDAR data as red dots. (f-g) show ROC curves
of occupancy and dynamic classification. (h-i) plot velocity estimation results along with the ground truth.

and correct when its center is inside an object. Note that a cell
can be classified as D and O simultaneously. By adjusting
the value of ζ2, . . . , ζ5 in a wide range, the ROC (Receiver
Operating Characteristic) curves are obtained. Then, AUC
(Area Under the Curve) is computed which is a common
criterion for the evaluation of classification algorithms.

In velocity evaluation, the mean velocity of each cell is
estimated first with (12). Then, the velocity of each object
is estimated as well given the exact pose and geometry of
each object.

vObjt =

∑
xi∈Obj v

i
t E[θit,D]∑

xi∈Obj E[θit,D]
(35)

This estimate from each algorithm is compared to the ground
truth value.

A. Simple Environment

As described in Figure 2a, a stationary sensor in the
lower right corner observes two static objects and a dynamic
object moving along the triangular path in the XY plane.
We compare the proposed algorithm to the baseline while
varying the number of particles to check the efficiency of
particle usage. The classification results in Figure 2b-2e are
visualized with the color code (8) where blue and green
represent dynamic and static cells, respectively.

With 106 particles, denoted as ‘full’, both algorithms
perform well while the proposed algorithm shows better
performance over the baseline in dynamic classification with
lower false positive rate as shown in Figure 2g. In terms
of velocity estimation, K3DOM also provides more accu-
rate and consistent results as shown in Figure 2h-2i. Their
performance gaps get distinct with 104 particles, denoted
as ‘less’. DS-PHD/MIB totally loses the ability to estimate
dynamic occupancy while there is little degradation of the
performance for K3DOM. The result shows that K3DOM

is capable of representing the map efficiently with much
smaller number of particles.

Meanwhile, the occupancy classification results show
small gaps in terms of AUC in Figure 2f whereas the
baseline explicitly fails to map the environment with less
particles in Figure 2c. This discrepancy occurs since the
true positive rate of DS-PHD/MIB quickly increases along
with the false positive rate when the classification threshold
in (34) decreases. Also, numerous free cells are included in
the evaluation so that just 5-10% false positive rate severely
degrades the quality of the constructed map. Nevertheless,
the proposed algorithm shows better classification results
and more accurate and consistent velocity estimates than the
baseline.

B. Complex Environment

The complex environment consists of multiple static ob-
jects and four dynamic objects so is more challenging com-
pared to the simple environment. Static objects are arranged
so that the sensor cannot observe all objects simultaneously.
Dynamic objects move with piece-wise continuous velocities
spanning the z-direction as well as the XY plane. Further-
more, the sensor is moving around rather than fixed at the
same location. We indicate the trajectory of the dynamic
objects by the red arrows, and that of the sensor by the yellow
arrow in Figure 3a. Both algorithms utilize 106 particles in
this experiment.

As shown in Figure 3b-3c, K3DOM successfully separates
dynamic objects from static objects unlike DS-PHD/MIB.
This result may be occurred as DS-PHD/MIB represents both
the static and dynamic objects with particles. In other words,
K3DOM utilizes the particle more efficiently. Moreover,
K3DOM provides an explicit expression of uncertainty which
is visualized in Figure 3d. Note that the true positive rate
of DS-PHD/MIB does not converges to 1 in Figure 3f.
This result can happen when a dynamic object goes through
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Fig. 3: Experiments in complex environment. (a) describes the simulated gazebo environment. (b-c) represent the
classification results while (b) includes LiDAR data as red dots. (e-f) show ROC curves of each classification. (g) plots

velocity estimation results of a moving object. (h) plots norm of velocity estimation errors for each moving object

the previously vacant space with high evidence on ‘F’ and
zero evidence on ‘O’. When a cell belong to a dynamic
object is occluded in measurements because of obstacles,
the free evidence is reduced but still remains nonzero while
occupancy evidence is zero. In such case, the cell is neither
excluded from the evaluation nor classified as a dynamic cell.

The velocity evaluation results also clearly show that
K3DOM outperforms DS-PHD/MIB. Figure 3g shows the
x-component of velocity of the dynamic object whose tra-
jectory has C shape in the middle of Figure 3a. The figure
shows that the velocity estimate of K3DOM rapidly chases
the ground-truth value even it changes abruptly. As shown in
Figure 3h, K3DOM also estimates velocity more consistently
with less error than the baseline.

Fig. 4: Constructed map with classification for the simulated
urban environment after the sensor moves along the periph-
ery of a block.

C. Urban Environment

The simulated urban environment consists of various re-
alistic objects with complex geometry, rather than a simple

box or cylinder. We employed various models provided in
the gazebo, such as buildings, vehicles, trees, and so forth.
In this experiment, we qualitatively evaluate our proposed
algorithm. Figure 1c shows that K3DOM can classify the
dynamic objects well while capturing the detailed shape of
the static environment. Furthermore, Figure 4 demonstrates
that K3DOM is capable of scale-up to large data while
preserving the details of the map.

VI. CONCLUSION

This work proposed the 3-D dynamic occupancy mapping
algorithm, K3DOM, by adapting kernel inference for dy-
namic environments with particle tracking. We overcame the
inherent challenges of applying kernel inference in dynamic
environments through the 2-step estimation algorithm devel-
oped with intuitive heuristics. The proposed algorithm have
shown promising performance compared to the baseline with
real-time processing capability.

While the algorithm considers spatial correlation through
kernel function on a query point with nearby measurements
in the update step, the prediction and rebalancing steps
are not considering their neighborhood. Further developing
the algorithm to fully reflect the spatial correlation would
be an interesting future work with expected performance
improvements.
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